A Non-Monetary Mechanism for Optimal Rate Control Through Efficient Delay Allocation

Tao Zhao 1 Korok Ray 2 I-Hong Hou 1

¹Department of ECE Texas A&M University

²Mays School of Business Texas A&M University

WiOpt'17

Motivation

Optimal Rate Control

- A wireless network with multiple clients
- Individual utility: function of request arrival rate
- Problem: Find optimal rates that maximize total utility

Game theory is needed.

- Clients: selfish and strategic
- Individual utility: private

Motivation

Existing Work

- Auction: e.g. VCG auction
- Direct payment between client and server

Issues of Monetary Mechanisms

- Monetary exchange requires addtional infrastructure.
- Pricing every packet? Impractical.

Motivation

Existing Work

- Auction: e.g. VCG auction
- Direct payment between client and server

Issues of Monetary Mechanisms

- Monetary exchange requires addtional infrastructure.
- Pricing every packet? Impractical.

Non-monetary mechanism!

How Non-Monetary?

Observation

- Each client suffers disutility based on experienced delay.
- Server can control delay by scheduling.

How Non-Monetary?

Observation

- Each client suffers disutility based on experienced delay.
- Server can control delay by scheduling.

Our Approach

Use delay as the currency!

Main Contribution

A non-monetary mechanism by efficient delay allocation

System Model

- One server: Average request service rate μ
- Client i = 1, 2, ..., N:
 - Average request arrival rate λ_i : adjustable
 - Utility $U_i(\lambda_i)$: increasing, twice differentiable, concave
 - Average request delay $D_i(\lambda_i, \lambda_{-i})$

System Model

- Total average delay
 - Function of total average request arrival rate, $\Lambda := \sum_i \lambda_i$
 - Increasing and convex
 - Fitted by a (N-2)-order polynomial $C(\Lambda)$
- Assume feasible ${m \lambda}:=[\lambda_i]$ satisfies $\Lambda<(1-\epsilon)\mu,\lambda_i>\lambda_\delta>0$

Game Between Clients and Server

Nash Equilibrium and Efficiency

Definition

A vector
$$\tilde{\boldsymbol{\lambda}} := [\tilde{\lambda}_i]$$
 is said to be a Nash Equilibrium if $\tilde{\lambda}_i = \operatorname{argmax}_{\lambda_i} U_i(\lambda_i) - \lambda_i D_i(\lambda_i, \tilde{\lambda}_{-i}), \forall i$.

Definition

A rule of allocating delays, $[D_i(\cdot)]$, is said to be efficient if the vector that maximizes the total net utility, $\lambda^* := [\lambda_i^*]$, is the only Nash Equilibrium.

Remark

Server's problem is to find and enforce the rule that allocates delays, $[D_i(\cdot)]$, to induce optimal choices of $[\lambda_i]$.

Non-Monetary Mechanism for Optimal Rate Control

Efficient Delay Allocation Rule

Obstributed Rate Control Protocol

Non-Monetary Mechanism for Optimal Rate Control

1 Efficient Delay Allocation Rule

Scheduling Policy to Enforce Allocated Delays

Distributed Rate Control Protocol

Property of Efficient Delay Allocation Rule

Server

 λ^* is the solution to

$$\max\sum_{i} U_i(\lambda_i) - \Lambda C(\Lambda).$$

Hence,

$$U_i'(\lambda_i^*) = \frac{\partial}{\partial \lambda_i} \Lambda^* C(\Lambda^*)$$

Client

 λ^* is the solution to

$$\max U_i(\lambda_i) - \lambda_i D_i(\lambda_i, \lambda_{-i}^*).$$

Hence,

$$U_i'(\lambda_i^*) = \frac{\partial}{\partial \lambda_i} \lambda_i^* D_i(\lambda_i^*, \lambda_{-i}^*)$$

Observation

Want $\Lambda C(\Lambda) - \lambda_i D_i(\lambda_i, \lambda_{-i}) =: R_i(\lambda_{-i})$, the external disutility, independent of λ_i

Delay Allocation Rule

Delay Allocation Rule

•
$$\lambda_i D_i(\lambda_i, \lambda_{-i}) = \Lambda C(\Lambda) - R_i(\lambda_{-i})$$

•
$$R_i(\lambda_{-i}) = \sum_{j=1}^{N-1} \beta_i^j$$

•
$$\beta_i^j = c_j \sum_{\boldsymbol{p} \in P_i^j} \frac{N-1}{N-G(\boldsymbol{p})} \frac{j!}{p_1! \cdots p_N!} \lambda_1^{p_1} \cdots \lambda_N^{p_N}$$

• c_j : *j*-th order coefficient of polynomial $\Lambda C(\Lambda)$

•
$$P_i^j := \{ p = [p_n] \mid p_n \in \mathbb{Z}^*, \sum_{i=1}^N p_n = j, p_i = 0 \}$$

• $G(\mathbf{p})$ be the number of nonzero coordinates of \mathbf{p}

Theorem

Our rule of delay allocation $[D_i(\cdot)]$ is efficient.

An Example of Delay Allocation Rule

Example (N = 3)

$$\begin{array}{ll} \beta_{i}^{j} & j = 1 & j = 2 \\ i = 1 & c_{1}(\lambda_{2} + \lambda_{3}) & c_{2}(\lambda_{3}^{2} + 4\lambda_{2}\lambda_{3} + \lambda_{2}^{2}) \\ i = 2 & c_{1}(\lambda_{1} + \lambda_{3}) & c_{2}(\lambda_{3}^{2} + 4\lambda_{1}\lambda_{3} + \lambda_{1}^{2}) \\ i = 3 & c_{1}(\lambda_{2} + \lambda_{1}) & c_{2}(\lambda_{1}^{2} + 4\lambda_{2}\lambda_{1} + \lambda_{2}^{2}) \end{array}$$

- External disutility R_i (row sum) is independent of λ_i
- Allocated disutility $\lambda_i D_i = \Lambda C(\Lambda) R_i$
- Total disutility $\sum_{i} \lambda_i D_i = 3\Lambda C(\Lambda) \sum_{i} R_i = \Lambda C(\Lambda)$

Non-Monetary Mechanism for Optimal Rate Control

1 Efficient Delay Allocation Rule

2 Scheduling Policy to Enforce Allocated Delays

Distributed Rate Control Protocol

Scheduling Policy

Problem

How to enforce target delay $D_i(\lambda_i, \lambda_{-i})$ for client *i*?

MRQ Scheduling Policy

Let $Q_i(t)$ be the queue length of client *i* at time *t*, and $g_i := \lambda_i D_i$. At time *t*, the MRQ policy schedules the client with the maximum relative queue length, defined as $Q_i(t)/g_i$.

Intuition

Eventually all relative queue lengths are equal on average in steady state, or equivalently, average queue length (delay) = target queue length (delay).

State Space Collapse

Theorem (State Space Collapse)

The efficient delay allocation rule is enforced by the MRQ scheduling policy in the heavy traffic regime.

Remark

- Heavy traffic: $\Lambda \to \mu$
- Show the deviation of the limiting queue length vector from the target queue length vector approaches 0
- Lyapunov drift based technique

Non-Monetary Mechanism for Optimal Rate Control

2 Scheduling Policy to Enforce Allocated Delays

Obstributed Rate Control Protocol

How Distributed?

We already know

- Our delay allocation rule is efficient.
- Our MRQ scheduling policy enforces the delay allocation rule.

Problem

How are the clients supposed to update their request rates distributedly to converge to the Nash Equilibrium?

Idea

- Projected gradient method: Centralized
- How to make it distributed?

• Centralized update:

$$\hat{\boldsymbol{\lambda}}(k+1) = \boldsymbol{\lambda}(k) + \frac{\kappa(k)}{\eta(k)} \nabla \left[\sum U_i(\lambda_i) - \Lambda C(\Lambda) \right],$$
$$\boldsymbol{\lambda}(k+1) = P(\hat{\boldsymbol{\lambda}}(k+1))$$

- $\kappa(k)$: step size at the k-th iteration
- $\eta(\mathbf{k})$: Euclidean norm of the gradient
- *P*: projection to the feasible region s.t. $\lambda_i > \lambda_\delta$ and $\Lambda < (1 \epsilon)\mu$

• Distributed update:

$$\hat{\lambda}_{i}(k+1) = \lambda_{i}(k) + \frac{\kappa(k)}{\eta(k)} \left[U'_{i}(\lambda_{i}(k)) - \frac{\mathrm{d}[\Lambda C(\Lambda)]}{\mathrm{d}\Lambda} \right],$$
$$\boldsymbol{\lambda}(k+1) = P(\hat{\boldsymbol{\lambda}}(k+1))$$

- $\kappa(k)$: step size at the k-th iteration
- $\eta(\mathbf{k})$: Euclidean norm of the gradient
- *P*: projection to the feasible region s.t. $\lambda_i > \lambda_{\delta}$ and $\Lambda < (1 \epsilon)\mu$

• Distributed update:

$$\hat{\lambda}_{i}(k+1) = \lambda_{i}(k) + \frac{\kappa(k)}{\eta(k)} \left[U_{i}'(\lambda_{i}(k)) - \frac{\mathrm{d}[\Lambda C(\Lambda)]}{\mathrm{d}\Lambda} \right],$$
$$\lambda_{i}(k+1) = \min\{\max\{\hat{\lambda}_{i}(k+1), \lambda_{\delta}\}, \lambda_{i}(k) \frac{(1-\epsilon)\mu}{\Lambda(k)}\}$$

- $\kappa(k)$: step size at the *k*-th iteration
- $\eta(k)$: Euclidean norm of the gradient

• Distributed update:

$$\hat{\lambda}_{i}(k+1) = \lambda_{i}(k) + \frac{\kappa(k)}{\eta(k)} \left[U_{i}'(\lambda_{i}(k)) - \frac{\mathrm{d}[\Lambda C(\Lambda)]}{\mathrm{d}\Lambda} \right],$$
$$\lambda_{i}(k+1) = \min\{\max\{\hat{\lambda}_{i}(k+1), \lambda_{\delta}\}, \lambda_{i}(k) \frac{(1-\epsilon)\mu}{\Lambda(k)}\}$$

- $\kappa(\mathbf{k})$: step size at the \mathbf{k} -th iteration
- $\eta(\mathbf{k})$: Euclidean norm of the gradient

• $\Lambda(k), \kappa(k), \eta(k)$, and $\frac{d[\Lambda C(\Lambda)]}{d\Lambda}$ are the same for all clients: Broadcast!

Simulations

• Validate our non-monetary mechanism

- Polynomial approximation assumption
- State space collapse in scheduling
- Optimality of distributed rate control protocol
- Baseline mechanism
 - FIFO (first-in-first-out) scheduling policy
 - Centralized projected gradient method for rate control
- Two systems: M/M/1 v.s. M/D/1
 - N = 10 clients
 - Poisson arrivals: $\Lambda = 0.99 \times 10^3 \, \text{s}^{-1}$
 - Exponential/Deterministic service time: $\mu = 1 \times 10^3 \, {
 m s}^{-1}$

Polynomial Approximation

Total disutility $\Lambda \textit{C}(\Lambda)$ v.s. Normalized total request rate Λ/μ

State Space Collapse

Normalized difference of relative queue lengths v.s. Time

Nash Equilibrium

Summary

Non-Monetary Mechanism for Optimal Rate Control

- Efficient delay allocation rule
- MRQ scheduling policy
- Distributed rate control protocol

Summary

Non-Monetary Mechanism for Optimal Rate Control

 $\begin{array}{l} \mathsf{Delay} = \mathsf{Currency} \\ \mathsf{Time} = \mathsf{Money} \end{array}$

Thank you!

Tao Zhao alick@tamu.edu

