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Motivation

Optimal Rate Control

@ A wireless network with multiple clients
@ Individual utility: function of request arrival rate

@ Problem: Find optimal rates that maximize total utility

Game theory is needed. A

o Clients: selfish and strategic 12
@ Individual utility: private
&
)



Motivation

Existing Work

@ Auction: e.g. VCG auction

@ Direct payment between client and server

Issues of Monetary Mechanisms

@ Monetary exchange requires addtional infrastructure.

@ Pricing every packet? Impractical.
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Non-monetary mechanism!



How Non-Monetary?

@ Each client suffers disutility based on experienced delay.

@ Server can control delay by scheduling.



How Non-Monetary?

@ Each client suffers disutility based on experienced delay.

@ Server can control delay by scheduling.

Our Approach

Use delay as the currency!

Main Contribution

A non-monetary mechanism by efficient delay allocation



System Model

@ One server: Average request service rate p

o Clienti=1,2,..., N
e Average request arrival rate \;: adjustable
o Utility U;(\;): increasing, twice differentiable, concave
o Average request delay D;(\;, A_;)

Client 1

R

I

Aj Server:
— —_—
] max U8 - AD,

Client /:
max Ui(\;) — A,D,(A“)\/
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System Model

o Total average delay

o Function of total average request arrival rate, A := )" \;
e Increasing and convex
o Fitted by a (N — 2)-order polynomial C(A)

@ Assume feasible X := [\]] satisfies A < (1 —€)p, A\j > As >0

Client 1

S

A Server:
/e — maxy>; Ui(A;) — AC(N)

Client i: where A =3, A,
max U;(\;) — A,D,(A,,)\/

A

Client N



Game Between Clients

and Server

Client chooses
its arrival rate \;

Client observes
its own delay D,

Server allocates
delays [Dj(Aj, A_)]

Server enforces
delays by scheduling




Nash Equilibrium and Efficiency

Definition

1 |

A vector X =[] is said to be a Nash Equilibrium if
)\,‘ = argmax)\’_ U,'()\,') — )\,’D,‘()\,’, )\_,‘), Vi.

Definition

A rule of allocating delays, [Dj(-)], is said to be efficient if the
vector that maximizes the total net utility, A* := [Af], is the only
Nash Equilibrium.

RENEIL

Server's problem is to find and enforce the rule that allocates
delays, [D;(-)], to induce optimal choices of [A]].
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@ Efficient Delay Allocation Rule

© Scheduling Policy to Enforce Allocated Delays

© Distributed Rate Control Protocol



Non-Monetary Mechanism for Optimal Rate Control

@ Efficient Delay Allocation Rule



Property of Efficient Delay Allocation Rule

A* is the solution to A* is the solution to
max Y Ui(A\j) — AC(A). max Uj(A;) — \iDi(\i, X)),
Hence, Hence,
Ui‘()‘i) = 8_>\A C(A ) U:'()‘i) = ON; /\ D'()‘i’)‘—i)

Observation
Want AC(A) — \iDi(Aj, A—;) =: Ri(A—j), the external disutility,
independent of \;
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Delay Allocation Rule

Delay Allocation Rule

) )\,'D,'()\,', )\7,') = AC(A) — R,'()\,,')

° Ri(A_) = Z(‘Hg!

O /BJ C:’ZPEP/ N G )\pl )\7\/\’

@ ¢ j-th order coefﬁaent of ponnomiaI AC(A)

o Pl:={p=Ips]|pn€Z" L, pr=Jjpi=0}
@ G(p) be the number of nonzero coordinates of p

Our rule of delay allocation [D;(-)] is efficient.
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An Example of Delay Allocation Rule

Example (N = 3)
Bl j— j=2
i=1 c1(Aa+ A3) CQ()\% + 4o A3 + )\%)
i=2 Cl()\l 4F )\3) CQ()\% + 4\ A3 + )\%)
i=3 ¢ ()\2 -+ )\1) CQ(A% + 4o\ + )\%)

@ External disutility R; (row sum) is independent of A;
o Allocated disutility A\;D; = AC(A) — R;
o Total disutility Z,-)\,'D; = 3AC(A) = ZI—R; = AC(A)
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Non-Monetary Mechanism for Optimal Rate Control

© Scheduling Policy to Enforce Allocated Delays



Scheduling Policy

How to enforce target delay D;(\;, A_;) for client i?

MRQ Scheduling Policy

Let Qi(t) be the queue length of client i at time t, and g; := \;D;.
At time t, the MRQ policy schedules the client with the maximum
relative queue length, defined as Q;(t)/gi.

Intuition

Eventually all relative queue lengths are equal on average in steady
state, or equivalently, average queue length (delay) = target queue
length (delay).
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State Space Collapse

Theorem (State Space Collapse)

The efficient delay allocation rule is enforced by the MRQ
scheduling policy in the heavy traffic regime.

@ Heavy traffic: A — u

@ Show the deviation of the limiting queue length vector from
the target queue length vector approaches 0

@ Lyapunov drift based technique
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Non-Monetary Mechanism for Optimal Rate Control

© Distributed Rate Control Protocol



How Distributed?

We already know

@ Our delay allocation rule is efficient.

@ Our MRQ scheduling policy enforces the delay allocation rule.

How are the clients supposed to update their request rates
distributedly to converge to the Nash Equilibrium?

@ Projected gradient method: Centralized
@ How to make it distributed?
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Centralized — Distributed

o Centralized update:

A(k+1) = X(k) + “E";V [Z Ui(

n(k

A) - AC(A)] |

Ak+1) = PA(k+1))

o r(k): step size at the k-th iteration
e 7(k): Euclidean norm of the gradient

e P: projection to the feasible region
st. Ai>Asand A< (1 —¢€)p

Ak +1)

Ak+1)
A(k)




Centralized — Distributed

@ Distributed update:

. K (k)

Ailk+1) = Xi(k) + == [Ui(Xi(k) —

n(k)

d[AC(A)]
dA ’

A(k+1) = P(A(k+ 1))

o r(k): step size at the k-th iteration
e 7(k): Euclidean norm of the gradient

e P: projection to the feasible region
st. Ai>Asand A< (1 —¢€)p

Ak +1)

Ak+1)
A(k)




Centralized — Distributed

@ Distributed update:

M(k+1) = \i(k) + 5553 U(N(K) — dV\dC/EAﬂ 7
M(k+1) = min{max{Ai(k+ 1), As}, A(K) (1A_(/<6))M}

o r(k): step size at the k-th iteration A

e 7(k): Euclidean norm of the gradient




Centralized — Distributed

@ Distributed update:

et ) =0 + S |uouw) - TR
Ai(k+1) = min{max{\j(k+ 1), A\s}, Mi(k) (1- G)M}

A(K)

o r(k): step size at the k-th iteration A

e 7(k): Euclidean norm of the gradient

o A(k),k(k),n(k), and w are the
same for all clients: Broadcast!




Simulations

o Validate our non-monetary mechanism

e Polynomial approximation assumption

e State space collapse in scheduling

o Optimality of distributed rate control protocol
@ Baseline mechanism

o FIFO (first-in-first-out) scheduling policy

e Centralized projected gradient method for rate control
e Two systems: M/M/1 v.s. M/D/1

o N =10 clients
o Poisson arrivals: A =0.99 x 103s7!
o Exponential/Deterministic service time: y =1 x 103s7!



Polynomial Approximation
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State Space Collapse
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Nash Equilibrium
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Summary

Non-Monetary Mechanism for Optimal Rate Control

o Efficient delay allocation rule
@ MRQ scheduling policy

@ Distributed rate control protocol
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Summary

Non-Monetary Mechanism for Optimal Rate Control

Delay = Currency
Time = Money
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