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Motivation

Optimal Rate Control
A wireless network with multiple clients
Individual utility: function of request arrival rate
Problem: Find optimal rates that maximize total utility

Game theory is needed.
Clients: selfish and strategic
Individual utility: private
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Motivation

Existing Work
Auction: e.g. VCG auction
Direct payment between client and server

Issues of Monetary Mechanisms
Monetary exchange requires addtional infrastructure.
Pricing every packet? Impractical.

Non-monetary mechanism!
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How Non-Monetary?

Observation
Each client suffers disutility based on experienced delay.
Server can control delay by scheduling.

Our Approach
Use delay as the currency!

Main Contribution
A non-monetary mechanism by efficient delay allocation
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System Model

One server: Average request service rate µ

Client i = 1, 2, . . . ,N:
Average request arrival rate λi: adjustable
Utility Ui(λi): increasing, twice differentiable, concave
Average request delay Di(λi, λ−i)

µ
Server:

max
∑
iUi(λi)− λiDi

Client 1
λ1

Client i :
maxUi(λi)− λiDi(λi , λ−i)

λi

Client N

λN

...
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System Model

Total average delay
Function of total average request arrival rate, Λ :=

∑
i λi

Increasing and convex
Fitted by a (N − 2)-order polynomial C(Λ)

Assume feasible λ := [λi] satisfies Λ < (1− ϵ)µ, λi > λδ > 0

µ
Server:

max
∑
i Ui(λi)− ΛC(Λ)

where Λ =
∑
i λi

Client 1
λ1

Client i :
maxUi(λi)− λiDi(λi , λ−i)

λi

Client N

λN

...
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Game Between Clients and Server

Client chooses
its arrival rate λi

Server allocates
delays [Di(λi , λ−i)]

Server enforces
delays by scheduling

Client observes
its own delay Di
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Nash Equilibrium and Efficiency

Definition
A vector λ̃ := [λ̃i] is said to be a Nash Equilibrium if
λ̃i = argmaxλi Ui(λi)− λiDi(λi, λ̃−i),∀i.

Definition
A rule of allocating delays, [Di(·)], is said to be efficient if the
vector that maximizes the total net utility, λ∗ := [λ∗

i ], is the only
Nash Equilibrium.

Remark
Server’s problem is to find and enforce the rule that allocates
delays, [Di(·)], to induce optimal choices of [λi].
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Non-Monetary Mechanism for Optimal Rate Control

1 Efficient Delay Allocation Rule

2 Scheduling Policy to Enforce Allocated Delays

3 Distributed Rate Control Protocol
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Property of Efficient Delay Allocation Rule

Server
λ∗ is the solution to

max
∑

i
Ui(λi)− ΛC(Λ).

Hence,

U′
i(λ

∗
i ) =

∂

∂λi
Λ∗C(Λ∗)

Client
λ∗ is the solution to

max Ui(λi)− λiDi(λi, λ
∗
−i).

Hence,

U′
i(λ

∗
i ) =

∂

∂λi
λ∗

i Di(λ
∗
i , λ

∗
−i)

Observation
Want ΛC(Λ)− λiDi(λi, λ−i) =: Ri(λ−i), the external disutility,
independent of λi
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Delay Allocation Rule

Delay Allocation Rule
λiDi(λi, λ−i) = ΛC(Λ)− Ri(λ−i)

Ri(λ−i) =
∑N−1

j=1 βj
i

βj
i = cj

∑
p∈Pj

i

N−1
N−G(p)

j!
p1!···pN!

λp1
1 · · ·λpN

N

cj: j-th order coefficient of polynomial ΛC(Λ)
Pj

i := {p = [pn] | pn ∈ Z∗,
∑N

i=1 pn = j, pi = 0}
G(p) be the number of nonzero coordinates of p

Theorem
Our rule of delay allocation [Di(·)] is efficient.
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An Example of Delay Allocation Rule

Example (N = 3)
βj

i j = 1 j = 2
i = 1 c1(λ2 + λ3) c2(λ2

3 + 4λ2λ3 + λ2
2)

i = 2 c1(λ1 + λ3) c2(λ2
3 + 4λ1λ3 + λ2

1)
i = 3 c1(λ2 + λ1) c2(λ2

1 + 4λ2λ1 + λ2
2)

External disutility Ri (row sum) is independent of λi

Allocated disutility λiDi = ΛC(Λ)− Ri

Total disutility
∑

i λiDi = 3ΛC(Λ)−
∑

i Ri = ΛC(Λ)
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Non-Monetary Mechanism for Optimal Rate Control

1 Efficient Delay Allocation Rule

2 Scheduling Policy to Enforce Allocated Delays

3 Distributed Rate Control Protocol
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Scheduling Policy

Problem
How to enforce target delay Di(λi, λ−i) for client i ?

MRQ Scheduling Policy
Let Qi(t) be the queue length of client i at time t, and gi := λiDi.
At time t, the MRQ policy schedules the client with the maximum
relative queue length, defined as Qi(t)/gi.

Intuition
Eventually all relative queue lengths are equal on average in steady
state, or equivalently, average queue length (delay) = target queue
length (delay).
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State Space Collapse

Theorem (State Space Collapse)
The efficient delay allocation rule is enforced by the MRQ
scheduling policy in the heavy traffic regime.

Remark
Heavy traffic: Λ → µ

Show the deviation of the limiting queue length vector from
the target queue length vector approaches 0

Lyapunov drift based technique
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Non-Monetary Mechanism for Optimal Rate Control

1 Efficient Delay Allocation Rule

2 Scheduling Policy to Enforce Allocated Delays

3 Distributed Rate Control Protocol
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How Distributed?

We already know
Our delay allocation rule is efficient.
Our MRQ scheduling policy enforces the delay allocation rule.

Problem
How are the clients supposed to update their request rates
distributedly to converge to the Nash Equilibrium?

Idea
Projected gradient method: Centralized
How to make it distributed?
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Centralized → Distributed

Centralized update:

λ̂(k + 1) = λ(k) + κ(k)
η(k)∇

[∑
Ui(λi)− ΛC(Λ)

]
,

λ(k + 1) = P(λ̂(k + 1))

κ(k): step size at the k-th iteration
η(k): Euclidean norm of the gradient
P: projection to the feasible region
s.t. λi > λδ and Λ < (1− ϵ)µ

Λ(k), κ(k), η(k), and d[ΛC(Λ)]
dΛ are the

same for all clients: Broadcast!

λ(k)

λ̂(k + 1)

λ(k + 1)
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Centralized → Distributed
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Simulations

Validate our non-monetary mechanism
Polynomial approximation assumption
State space collapse in scheduling
Optimality of distributed rate control protocol

Baseline mechanism
FIFO (first-in-first-out) scheduling policy
Centralized projected gradient method for rate control

Two systems: M/M/1 v.s. M/D/1
N = 10 clients
Poisson arrivals: Λ = 0.99 × 103 s−1

Exponential/Deterministic service time: µ = 1 × 103 s−1
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Polynomial Approximation
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State Space Collapse
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Nash Equilibrium
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Summary

Non-Monetary Mechanism for Optimal Rate Control
Efficient delay allocation rule
MRQ scheduling policy
Distributed rate control protocol
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Summary

Non-Monetary Mechanism for Optimal Rate Control
Delay = Currency
Time = Money
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Thank you!
Tao Zhao

alick@tamu.edu
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